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ABSTRACT
Applications that process complex data, such as maps, per-
sonal data, book information, travel data, etc., are becoming
extremely common. Testing such applications is hard, be-
cause they require realistic and coherent test inputs that are
expensive to generate manually and difficult to synthesize
automatically. So far the research on test case generation
techniques has focused mostly on generating test sequences
and synthetic test inputs, and has payed little attention to
the generation of complex test inputs.

This paper presents Link, a technique to automatically
generate test cases for applications that process complex
data. The novel idea of Link is to exploit the Web of Data
to generate test data that match the semantics of the re-
lated fields, and satisfy the semantic constraints that arise
among interrelated fields. Link automatically analyzes the
GUI of the application under test, generates a model of the
required inputs, queries DBPedia to extract the data that
can be used in the tests, and uses the extracted data to
generate complex system test inputs.

The experimental results show that Link can generate re-
alistic and coherent test inputs that can exercise behaviors
difficult to exercise with currently available techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools (e.g., data generators, coverage testing)

General Terms
Verification

Keywords
System testing, realistic test input, Web of data.

1. INTRODUCTION
Many applications require realistic and coherent data to

be thoroughly tested. Realistic data are semantically mean-
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ingful data that correspond to precise sets of elements, such
as the names of Swiss cities, the names of car manufactur-
ers and the symbols of chemical elements. Coherent data
are data composed of multiple semantically correlated fields,
such as the fields that compose a full address that includes
a city name, a corresponding zip code and a street name
compatible with the city and the zip code. Examples of
applications that require realistic and coherent data range
from services available on the Web, for instance, services for
booking or searching, to desktop applications, for instance,
applications to archive and classify books, to apps that inter-
act with the environment, for instance, maps and shopping
apps.

Manually generating a thorough test suite for a GUI with
many semantically interrelated fields can be very expensive
because the test designers shall find semantically correct and
coherent data that cover the many aspects of the GUI. Gen-
erating test cases automatically may largely reduce the ef-
fort required to generate test cases. Unfortunately, so far re-
search in automatic generation of system-level test cases has
focused mostly on deriving test sequences, with approaches
based on models [36, 37], learning [34], search-based algo-
rithms [29], and reuse [28, 24]. These strategies do not tackle
the problem of generating realistic and coherent test inputs,
and can hardly cope with applications that extensively ex-
ploit the semantic of the input data.

Recently Bozkurt and Harman have proposed an approach
to generate realistic and complex test data based on Web ser-
vice composition [17], while McMinn, Shabaz and Stevenson
have defined an approach to generate complex data based
on the integration with Web searches [35, 42].

The approach by Bozkurt and Harman generates complex
data by searching for Web services that produce the required
type of data, and uses other Web services to feed the inputs
of the selected Web service. This approach produces useful
results when it can discover the right composition of Web
services, but in several cases, a perfect composition might
not exist and significant manual effort could be necessary
to activate the chain of dependencies among Web services.
Moreover, the early results show that this composition works
well for simple inputs, mostly single field data, but is much
less effective when dealing with complex inputs [17].

The approaches based on Web searches extract keywords
from the artifact under test and exploit these keywords to
search the Web. The text in the pages returned by the
search is parsed and filtered to be used as test inputs [35].
The approach has a low precision and is well suited for single
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field data, but cannot address the frequent case of forms with
multiple correlated input fields.

In this paper, we present Link, a new automated approach
to generate realistic and coherent data that can produce a
large volume of complex test inputs composed of multiple
semantically correlated fields. In this way, the approach
overcomes the limitations of both manual generation and of
the current automatic tools. The novel idea of Link is to
take advantage of the largest structured source of informa-
tion available on the Web: the Web of Data [14]. The Web
of Data is a freely available global data space containing bil-
lions of interconnected statements, usually represented with
RDF triples [18]. The interconnections between statements
capture relevant semantic relations. This space can be ac-
cessed, queried and browsed using different endpoints and
protocols [16]. Link analyzes the graphical interface of an
application, produces a model that captures the semantic of
the data required to test the application, and automatically
extracts the test inputs necessary to feed the interface us-
ing the DBPedia SPARQL (Sparql Protocol And Rdf Query
Language) endpoint [46]. The generated test inputs have
the following unique characteristics:
• they are syntactically correct, that is, the inputs are legal

according to the syntax required by the fields,
• they are semantically valid, that is, the inputs are realistic

and meaningful according to the semantic of the fields,
• they are semantically coherent, that is, the inputs are mu-

tually meaningful, sound and consistent when considered
as a whole.
While the existing approaches can generate inputs that

are syntactically correct and, to some extent, semantically
valid, Link is the only technique that can automatically gen-
erate a relevant amount of data that satisfy all the three
key characteristics outlined above, since none of the exist-
ing techniques can generate test inputs that are semantically
coherent.

The paper is organized as follows. Section 2 provides some
background information about the Web of data and DBPe-
dia. Section 3 overviews the Link approach. Sections 4 and
5 describe how Link associates GUI labels with RDF triples
and how Link builds a model that represents the test inputs
required by the application, respectively. Section 6 describes
the process to extract relevant data from the Web of Data,
and to turn the data into test inputs. Section 7 presents
the empirical results obtained applying Link to a number
of applications. Section 8 discusses related work. Section 9
summarizes contributions and provides final remarks.

2. THE WEB OF DATA
The Web is quickly evolving into a platform for data inte-

gration and information management. This evolution is led
by the Web of Data, a huge data space of interlinked data
that can be accessed and populated through various proto-
cols and techniques. The creation and evolution of the Web
of Data is driven by a set of best practices for publishing
and connecting structured data on the Web, known as the
Linked Data principle [14].

The Linked Data principle specifies how to define and pub-
lish machine-readable typed links between arbitrary items
in the world. The items are identified with Uniform Re-
source Identifiers (URIs) and the links are represented with
the Resource Description Framework (RDF) language. An
URI is a compact sequence of characters that identifies ei-

ther an abstract or physical resource [13]. For instance, the
URI http://dbpedia.org/resource/Berlin identifies the city
of Berlin.

RDF provides a way of encoding typed statements in the
form of triples 〈subject, predicate, object〉 [33]. The subject
is a URI, the object is either a URI or a literal, and the pred-
icate is a URI that specifies a relation among the subject and
the object. For instance, the RDF triple 〈<http://dbpedia.
org/resource/Berlin> <http://dbpedia.org/ontology/country>

<http://dbpedia.org/resource/Germany>〉 indicates that the
city of Berlin is part of Germany.

Everybody can publish new data sources including state-
ments and links to statements published by others. We
generically refer to such data source as a Knowledge Base. In
few years the application of the Linked Data principle led to
a huge amount of typed and interlinked statements available
and freely accessible on the Web. In 2011, the Web of Data
included about 31.5 billion of RDF triples, with about 500
million of RDF links connecting different data sources [15].

DBpedia, the knowledge base that we used in our experi-
ments, is one of the largest knowledge bases available on the
Web. DBpedia is obtained by extracting structured informa-
tion from Wikipedia, and turning this information into an
accessible form that includes entities associated with URIs,
rich RDF descriptions of each entity, classification of enti-
ties into hierarchies, and links among entities [16]. DBpedia
currently includes more than one billion RDF triples.

Knowledge bases such as DBpedia can be conveniently
accessed online through SPARQL endpoints, which are in-
terfaces that support the execution of SPARQL queries.
SPARQL is a query language for data represented as RDF
triples [46]. SPARQL supports select statements that can
return results in various forms, such as tables, RDF triples,
and RDF graphs (an RDF graph is a graph where nodes
represent subjects and objects of RDF triples, and edges
represent predicates). For instance, the following SPARQL
query extracts all the cities of Germany from DBpedia:

SELECT ?subject WHERE {
?subject <http://www.w3.org/2000/01/rdf-schema#type>

<http://dbpedia.org/ontology/City>.
?subject <http://dbpedia.org/ontology/country>

<http://dbpedia.org/resource/Germany>.
}

Link interacts with DBPedia only using SPARQL end-
points, and thus can extract data from other knowledge
bases that implement a SPARQL endpoint, i.e., almost all
the non-trivial knowledge bases currently available.

3. AUTOMATIC TESTING WITH SEMAN-
TICALLY CORRELATED INPUTS

Link aims to automatically generate tests for complex in-
puts that include semantically interrelated values. This is
the case for example of an application that searches for books
given an author, a title of a book written by that author and
the isbn number corresponding to that book. A valid test
case is composed of three semantically related values, like
〈Umberto Eco, The name of the rose, 978 − 0156001311〉,
which are difficult to generate without proper semantic in-
formation. Link succeeds in generating valid test cases by
exploting the Web of Data. As shown in Figure 1 Link
works in two main stages, generate the model and test the
application.
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Figure 1: The Link approach.

In the first stage (Generate the Model), Link examines
the fields in the window under test and uses the Web of
Data (Knowledge Base) to generate a model of the input
values. The model represents the semantics of the inputs
required by the windows. Link builds the model in two
phases: It first maps labels that characterize the input values
in the windows under test with types in the Web of Data
(Map Labels), and then clusters the values in a graph that
represent the semantic relations among the values (Generate
RDF Graph).

In the Map labels phase, Link parses the windows under
test and extracts the labels associated with the input wid-
gets that must be filled in, looks for classes and predicates
corresponding to the extracted labels in the knowledge base,
and returns a set of RDF triples that represent the semantics
of the single input fields of the application.

In the Generate RDF graph phase Link discovers correla-
tions among RDF triples and produces an RDF graph [33]
that captures the semantics of the inputs required by the
window under test. The RDF graph produced in this phase
captures both the semantics of the single input fields and
the semantics of the correlations among fields.

In this stage, the test designers can provide additional
information to improve the precision of the mapping. The
additional information is provided in the form of a User-
Specified Mapping and may for example add information
to generic labels, as we will see in the next sections. This
information is the only manual activity required from the
test designers and, although useful, is not required.

In the second stage (Test the Application), Link gener-
ates and executes the test inputs. It first instantiates the
relations among input values in concrete inputs (Generate
Inputs) and then instantiates the test script with the gener-
ated concrete inputs and executes it (Run Test Cases).

Link generates inputs by querying the knowledge base and
extracting a set of values that both satisfies all the relations
represented in the model and are semantically different from
the previously extracted values. A single test input consists
of multiple data values, one for each input widget, that are
both realistic and semantically correlated according to the
relations represented in the model.

Link enters the inputs into the application by running a
template test script, which consists of a set of statements
that bring the windows under test in the target state, en-
ter the input data generated in the previous phase, exe-
cute the functionality, check the result, close the applica-
tion, and reset the state, if necessary. Test scripts can be
conveniently recorded with capture and replay tools. In our
experiments we used IBM Rational Functional tester [31]
and Robotium [9].

In the next sections we illustrate the phases of the tech-
nique using a realistic running example. We consider the
generation of test inputs for an application that can search
for books given the following fields: the author, the pub-

lisher, the isbn, the genre, the serial and the title.

4. MAP LABELS
The Map Labels phase produces a set of RDF triples that

capture the semantic of the inputs in the window under
test in three steps: identify descriptors, map descriptors to
classes and predicates, and discover alternative mappings.
The identify descriptors step identifies the GUI labels asso-
ciated with the input fields. The map descriptors to classes
and predicates step checks if the descriptors occur as either
predicate or class names in the knowledge base. The dis-
cover alternative mappings step finds a mapping for the de-
scriptors that do not occur in the knowledge base as is, by
exploiting various strategies.

If the test designer has provided a predefined mapping
between some of the labels in the GUI and the concepts in
the knowledge base, Link uses this mapping for those labels.
Thus the analysis steps described below apply to the labels
that do not occur in the user-specified mapping.

4.1 Identify Descriptors
For each widget Link identifies the corresponding textual

descriptor in the GUI, which is usually a label that describes
the data that can be entered in the input widget.

Link identifies the descriptor associated with each widget
by looking for the label closest to the input widget. Link
takes into account the best practices in GUI design, such as
the position that the labels usually have with respect to the
input widgets and the hierarchical organization of the GUI
elements. Link has been demonstrated to produce the right
associations with high precision and recall, as reported in
details in a former paper, where we present the approach to
locate labels in a GUI [12].

Link implements simple cleaning strategies to remove the
noise that might occur in labels, such as removing special
characters and separate words when labels are expressed by
means of the Camel notation.

In the running example, the descriptors associated with
the input widgets are author, publisher, isbn, genre, se-
rial, and title.

4.2 Map Descriptors to Classes and Predicates
In the second step, Link maps the retrieved descriptors to

the data in the knowledge base. Link creates this mapping
with a SPARQL query that looks for predicates and classes
whose names match the descriptors. Since predicates are
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used more often than classes to represent attributes, Link
tries first to map a descriptor to a predicate, and then to a
class only if it does not find a matching predicate.

Using either a predicate or a class name makes sense only
if it is used frequently enough in the knowledge base. Link
finalizes a mapping only if the selected predicate or class
occurs more than in a given number of RDF triples, where
the threshold is a parameter that can be fixed depending on
the knowledge base. In our experiments with DBPedia, we
set the threshold to 100.

The search for a suitable mapping of the descriptors can
be restricted to the namespaces that correspond to the best
structured and organized ontologies, among the many names-
paces supported by a knowledge base. In the case of DB-
Pedia we initially limit the search to predicates and classes
defined in the namespace dbpedia-owl.

?sbj_publisher	   ?obj_publisher	  

?sbj_isbn	   ?obj_isbn	  

?sbj_author	   ?obj_author	  

?sbj_series	   ?obj_series	  

isbn	  

author	  

publisher	  

series	  

?sbj_genre	   ?obj_genre	  
genre	  

?sbj_3tle	   ?obj_3tle	  3tle	  

Figure 2: The RDF triples extracted after the first
phase for the running example.

4.3 Discover Alternative Mappings
If Link can find neither a predicate nor a class that matches

a descriptor, it attempts to work around this case by iter-
atively considering synonyms, alternative namespaces and
synonyms with alternative namespaces.

Synonyms. Link searches for synonyms using WordNet,
a freely available online lexical database with more than
118K terms classified [25]. WordNet groups terms in sets
of cognitive synonyms, called synsets. Each synonym in a
synset has a sensenumber, which is a positive integer that
indicates how well that synonym can be used to express the
meaning of the synset. A sensenumber equal to 1 indicates
a perfect matching. The greater the sensenumber is the less
precise the matching is. Given a word, the WordNet Web
service can automatically find its synsets and the synonyms
in the synsets.

Link uses WordNet to retrieve a set of possible synonyms
for a given descriptor by selecting the words with the best
sensenumber from each synset. Link searches the synonyms
in the knowledge base and computes their support, where
the support is the number of instances (i.e., RDF triples)
that use the predicate or the class. Link uses the synonym
with the best support to map the descriptor.

In the running example, the descriptor serial cannot be
mapped with any predicate or class in DBPedia. However
using WordNet, Link automatically extracts the two syn-
onyms series and serialPublication, which are the best
representatives of their synsets. Since series has a support
equal to 19.482 when used as a predicate and serialPubli-

cation has a support equal to 0, Link successfully replaces
serial with series.

Alternative Namespaces. When Link fails to map a de-
scriptor even using synonyms, it extends the search of a

mapping for the descriptor to all the namespaces supported
by the knowledge base. For example, DBPedia uses terms
from more than 200 namespaces. Some of these namespaces
are quite general, but several are domain specific, such as the
audio, geo and radio ontologies, and can be extremely useful
for mapping descriptors of domain-specific applications.

Synonyms with Alternative Namespaces. When Link fails
with synonyms and namespaces, it combines the two strate-
gies and tries to map the synonyms of the descriptor with
the predicates and the classes that occur in every namespace
used in the target knowledge base.

The descriptors that are not mapped to the knowledge
base with any of the above strategies are ignored and no
test inputs are generated for the corresponding fields.

This phase produces a set of RDF triples with classes and
predicates corresponding to the input widgets to be used
for generating test cases. Figure 2 shows the resulting RDF
triples for the running example. The question marks in-
dicate free variables. We conventionally use ?sbj * for vari-
ables that represent the subjects of the relations, and ?obj *
for variables that represent the objects of the relations. In
the graph we display labels instead of URIs, and removed the
name of the namespaces to improve readability. The model
produced in this phase indicates that there exist resources in
the knowledge base (the subjects of the RDF triples) that
have specific attributes (represented with predicates), but
does not give information about their relations yet.

In a nutshell, the figure indicates the predicates that occur
both in the windows under test and in DBPedia (author,
publisher, etc). The variables that occur in the left and right
side of the triples indicate that we are not interested in the
specific elements that the predicates connect in DBPedia.

5. GENERATE RDF GRAPH
The set of triples generated in the previous phase repre-

sents the initial (disconnected) RDF graph. In this phase,
Link refines the RDF graph to capture the semantics of both
the inputs and the relations among fields. It starts from the
initial (disconnected) RDF graph and queries DBPedia to
identify and add new relations among predicates.

This phase is articulated in two steps. The first step, Ini-
tialize the RDF Graph, produces a model that represents the
semantic relations among the inputs. Sometime the model
produced in this step might be unsuitable for extracting test
data from the selected knowledge base. When this happens,
the second step, Refine the Model, modifies the model until
it creates a version suitable for generating test data.

?sbj_isbn	   ?obj_isbn	  
isbn	  

?sbj_publisher	   ?obj_publisher	  
publisher	  

?obj_isbn	  

?sbj	  

?obj_publisher	  
publisher	  

Figure 3: A simplified transformation of the RDF
graph to include relations between two predicates.

5.1 Initialize the RDF Graph
This step finds the relations between the RDF triples re-

trieved in the previous phase (i.e., the relations between
the input fields of the windows under test) and augments
the RDF graph with these relations. Link systematically
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searches for relations between the classes and predicates ex-
tracted in the previous phase using the knowledge base.

We first present the three classes of relations that Link
can discover, and then show how Link can deal with the
RDF triples that might remain isolated.

Relations Between Predicates. Two predicates are related
if the selected knowledge base includes at least a resource
that occurs as subject of both predicates. For instance, DB-
Pedia includes resources, like Books, that occur as subject
of both the predicates isbn and publisher. Thus the two
predicates are semantically related.

Link discovers the relations between pairs of predicates by
executing SPARQL queries that look for resources that oc-
cur as subject of pairs of predicates. If the SPARQL query
returns one or more resources, the graph is modified ac-
cording to the newly discovered information. For example,
Figure 3 shows how the graph is transformed to represent
the fact that predicates refer to a same subject: the two
subjects in the left part of the graph in Figure 3 are merged
into a single subject.

When several pairs of predicates are related, the model
may include a single subject associated with multiple pred-
icates. For instance, the model in Figure 4 shows the case
of predicates isbn, publisher and genre. This model is a
correct representation of the information in the knowledge
base as long as the predicates are not only related pairwise
but they are applicable all together at the same time on
a same subject. Since the graph is built working on pairs
of relations and not considering all the relations at once, it
might be the case that there is no resource in the knowl-
edge base that can occur as subject of all the predicates at
the same time. This happens in the running example. In
DBPedia there are resources that occur as subject of both
isbn and publisher, and as subject of both publisher and
genre, but there is no resource that can occur as subject of
both isbn and genre. Thus the model in Figure 4 does not
capture correctly the relation among the three predicates.

?obj_isbn	  

?sbj	   ?obj_publisher	  
publisher	  

?obj_genre	  

Figure 4: An example RDF graph with a subject
sharing three predicates.

To produce a correct graph, when Link discovers relations
between predicates it does not merge the subjects as shown
in Figure 3, but keeps the subjects and adds new predicates
that show that both predicates can be applied at the same
time to both subjects, as shown in Figure 5.

?sbj_isbn	   ?obj_isbn	  
isbn	  

?sbj_publisher	   ?obj_publisher	  
publisher	  

?obj_isbn	  

?obj_publisher	  publisher	  

isbn	  
?sbj_isbn	  

?sbj_publisher	  

Figure 5: The transformation of the RDF graph to
include relations between two predicates.

Considering that the subjects are free variables the graph
in the right part of Figure 5 shows twice that there are re-

sources that can be the subject of both the isbn and the
publisher predicates. In a sense this graph represents the
same information of the graph of Figure 4 with some redun-
dancy. The benefit of using this transformation instead of
the one shown in Figure 3 is clear when considering the case
of the three labels isbn, publisher and genre. In fact the
resulting RDF graph is the one shown in Figure 6 instead of
the one shown in Figure 4.

?sbj_isbn	  

?sbj_publisher	  

?sbj_genre	  

?obj_isbn	  

?obj_publisher	  

?obj_genre	  

isbn	  

publisher	  

genre	  publis
her	  

genre	  

isbn	  
publisher	  

Figure 6: An excerpt of the initial RDF graph gen-
erated for the running example.

The RDF graph in Figure 6 carries important information
that will be exploited by Link when refining the model. It is
easy to see that the model in Figure 6 has three subjects, two
of the subjects (sbj_isbn and sbj_genre) have two predi-
cates while one of the subjects (sbj_publisher) has three
predicates. Since in DBPedia there is no resource that can
satisfy the three relations at the same time, the model re-
finement will be able to modify the part of the model related
to the subject sbj_publisher, which is the problematic part
of the graph, preserving the other relations between predi-
cates. This cannot be done by simply referring to Figure 4
where there is a single subject and all the relations play the
same role in the graph.

Relations Between Classes and Predicates. Link repre-
sents a label mapped to a class as an RDF triple where the
subject is a free variable, the predicate is <http://www.w3.

org/2000/01/rdf-schema#type>, which is the predicate that
represents the type relation in RDF, and the object is the
label (i.e., the name of the type). For instance if the la-
bel song is mapped to the class Song, Link adds the triple
〈?sbj_song, <http://www.w3.org/2000/01/rdf-schema#type>,
Song〉 to the model. The semantics of the RDF triple is
that there exist resources whose type is Song in the selected
knowledge base.

Discovering relations between a predicate and a class is a
special case of discovering relations between two predicates.
Figure 7 shows the same transformation shown in Figure 5
applied to the case of a class Song and a predicate artist.
The resulting graph shows that there are resources of type
Song that have artist as an attribute.

?sbj_song	   Song	  rdf:type	  

?sbj_ar4st	   ?obj_ar4st	  ar4st	  

?sbj_song	   Song	  rdf:type	  

?sbj_ar4st	   ?obj_ar4st	  ar4st	  

Figure 7: The transformation of the RDF graph to
include relations among a class and a predicate.

Relations Between Classes. Given two classes (i.e., two
RDF triples) whose predicate is <http://www.w3.org/2000/

01/rdf-schema#type>, Link searches for relations between
these two classes (i.e., it looks for predicates that relate one
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?sbj_airport	   Airport	  rdf:type	  

?sbj_airline	   Airline	  rdf:type	  

?sbj_airport	   Airport	  rdf:type	  

?sbj_airline	   Airline	  rdf:type	  
?rel	  

Figure 8: The transformation of the RDF graph to
include relations between two classes.

subject to the other). If it finds at least a relation, it extends
the model accordingly.

For instance, the left part of Figure 8 shows the case of two
resources of type Airport and Airline. Since the knowl-
edge base includes multiple relations that relate resources
with these types, for instance, the hub relation that indi-
cates that an airport can serve as a hub for a given airline,
and the operator relation that indicates that a given airline
can operate in a given airport, Link refines the graph adding
these relations as shown in the right part of Figure 8.

The label on the newly added edge does not indicate a
specific predicate but is a free variable (represented with the
symbol ?rel). This is because there is no reason to bound
the relation between the two resources to a specific predicate
already in this phase, when there are multiple predicates
that can be used to relate them. The model preserves its
generality without constraining the value of the predicate,
but simply representing the fact that the two resources can
be directly related according to some predicates.

?sbj	   ?obj	  
p1	  
p2	  

Figure 9: The template of a practical synonym.

Relating Unrelated Triples. Once Link has extended the
RDF model with the relations discovered between RDF tri-
ples, there may still be some isolated triples, that is, tripes
not related with any other one. The lack of relations may
depend for example on imprecise mapping between terms in
the GUI and concepts in the knowledge base, as in the case of
the title predicate in the running example. Isolated RDF
triples may represent a problem in generating test cases,
because it may be difficult finding meaningful values for the
related fields.

To identify useful relations for isolated RDF triples, we
exploit the knowledge about the input domain discovered so
far and coded in the form of relations between triples. For in-
stance when dealing with the title predicate in the running
example, Link has identified that the application needs to be
tested with resources that relate to the predicates author,
publisher, isbn, genre, serial and title. Link uses this
information to modify the predicates in the isolated triples
with semantically equivalent predicates that better relate
with the model (i.e., better relate with the knowledge of the
input domain discovered so far).

Link identifies the candidate synonyms of a predicate in
an isolated triple by first applying the strategies described
in Section 4.3 (synonyms, alternative namespaces, and the
combination of the two), and then using a new strategy that
we call discovery of the practical synonyms and that can
discover good replacements of a predicates even if the new
predicate is not an official synonym.

Intuitively, the practical synonym strategy infers syno-
nyms from the knowledge base, and is based on the intuition
that if two predicates p1 and p2 are consistently used with a
same subject and a same object, as shown in Figure 9, they
likely represent the same information. More in general, we
say that p2 is a practical synonym of p1 if the ratio between
the number of resources that are subject of both p1 and p2

according to the schema shown in Figure 9 and the number
of resources that are subject of p1 is greater than 0.5.

To make a choice semantically coherent with the appli-
cation domain, Link computes the practical synonyms by
selecting only the resources of the most specific type that
use both the predicates in the model and the predicate in
the isolated triple.

When multiple candidate replacements are returned by
any of the query strategies, Link selects the predicate that
relates with the highest number of predicates that are not
isolated in the model, that is the one that better integrates
with the input domain of the application. In the running
example, the isolated RDF triple title cannot be related
with other predicates in the model using just synonyms and
namespaces, but Link successfully identified that name is a
practical synonym of title and automatically replaced db-

pedia:title with foaf:name.

5.2 Refine the Model
The model initialization may produce either a connected

or a non-connected RDF graph. A connected RDF graph
indicates that all the labels extracted from the GUI of the
application have been related within a single semantic con-
text, and can be used all together to generate test inputs
as shown in the next section. An RDF graph composed
of more than one connected component indicates that dif-
ferent subsets of labels refer to different contexts, and each
component is exploited independently to generate test cases:
Different subsets of the input widgets are filled in using the
data obtained with different connected components.

Each connected component can be used to extract data
from the knowledge base as follows: The free variables that
occur as objects of predicates can be used to retrieve mean-
ingful values from the knowledge base. For instance the
free variables ?obj_isbn, ?obj_publisher, and ?obj_genre

shown in Figure 6 can be used to retrieve ISBN numbers,
publisher names, and genre names. The free variables that
occur as subjects of the predicate type that prescribes that
a given input in the GUI must be of a given semantic type
can be also used to retrieve meaningful values.

In practice Link extracts data from the knowledge base
by executing a SPARQL query where each RDF triple in
the graph is translated into a constraint of the query. For
instance the two RDF triples with subject ?sbj_isbn shown
in Figure 6 require that the ISBN number and the publisher
name relate to a same resource. This is the standard way of
translating an RDF graph into a SPARQL query [46]. The
complete SPARQL query generated from the RDF graph in
Figure 6 is:

SELECT DISTINCT ?obj_isbn ?obj_publisher ?obj_genre WHERE {
?sbj_isbn dbpedia-owl:isbn ?obj_isbn .
?sbj_isbn dbpedia-owl:publisher ?obj_publisher .
?sbj_publisher dbpedia-owl:isbn ?obj_isbn .
?sbj_publisher dbpedia-owl:publisher ?obj_publisher .
?sbj_publisher dbpedia-owl:genre ?obj_genre .
?sbj_genre dbpedia-owl:publisher ?obj_publisher .
?sbj_genre dbpedia-owl:genre ?obj_genre .
}
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Although each connected component represents a seman-
tic context, some components may not be suitable for gen-
erating data, that is, the SPARQL query generated from
the model returns no data. This may occur because com-
ponents are identified looking at relations between pairs of
triples, and, when considering these relations all together,
the knowledge base might not include resources that satisfy
all of them at the same time. For instance, an application
that requires in input both the login data and some book
information may generate a component in the graph that in-
cidentally relates these two aspects, but such relation does
exist in the knowledge base. We call such components ”dead
components”.

Link addresses this problem by refining dead components
into smaller components that generate useful data. It weights
the edges in the graph according to their contribution to gen-
erate data from the knowledge base, and uses the minimum
cut algorithm [43] to identify the minimum weighted number
of edges that must be removed from the graph to obtain two
connected components from the current one. The resulting
components are then checked against their capability of ex-
tracting tuples from the knowledge base. The procedure is
applied iteratively until all components generate data from
the knowledge base. Intuitively, the refinement step elimi-
nates casual relations introduced in the graph by the incre-
mental algorithm that works on pairs of relations without
considering all the relations at the same time.

Since the minimum cut algorithm eliminates edges with
small weights and preserves the ones with big weights, Link
weights edges assigning small weights to the problematic
edges and high weight to relevant edges of the graph. Link
weights an edge e as follow:

1. it considers the RDF triple t = 〈s, e, o〉 associated with e
2. it identifies the portion of the graph close to this triple,

that is all the RDF triples t′ = 〈s′, e′, o′〉 that share with
t either the subject (s = s′) or the object (o = o′). We
indicate with Ge the graph with the triple t and all the
triples t′.

3. it computes the support of e as the number of instances
that satisfy Ge, intuitively the support indicates how
many tuples that satisfy the constraints in the subgraph
exists in the knowledge base. Edges with high support
do not cause problems, while edges with small support
strongly constraint the results.

4. it computes the connectivity of e as the ratio between the
total number of edges in the whole graph and the edges
in Ge. Intuitively the connectivity indicates how many
dependencies exist between e and the other predicates.
The more dependencies exist, the less the value of the
connectivity is, and the more likely e is over constraining
the extraction of data.

5. it computes the weight of e as the sum of the support
and the connectivity. Since the support is usually signif-
icantly bigger than the connectivity, the support drives
the minimum cut algorithm (having many instances is
a priority of Link), and when a portion of the graph has
the same support, the connectivity becomes the auxiliary
cutting criterion.

For instance, in the running example all the triples are
connected within a single component, but when the com-
ponent is used to query the knowledge base no data is re-
turned from DBPedia. Thus Link assigns weights to edges
and identifies the most problematic set of edges. The algo-

rithm identifies the edges with the predicate genre as the
most problematic ones and removes them, thus disconnect-
ing ?obj_genre from the rest of the graph. This is the right
action, because the attribute genre is not well supported
in DBPedia and only few resources use it. Note that the
graph in Figure 6 well supports this refinement step, while
the graph in Figure 4, where all the edges have the same
role, cannot be refined according to this strategy.

Once Link has identified the problematic edges, it removes
the ones that do not cause the loss of a descriptor associated
with an input widget that must be used in the test. If remov-
ing a triple causes the loss of a descriptor from the graph,
Link first tries to turn the dead component into a compo-
nent that can return data by replacing the descriptor. Link
searches for a replacement that enables the component to
return data by sequentially considering synonyms, names-
pace, synonyms and namespaces and practical synonyms as
described in Section 5.1. If Link finds multiple alternatives,
it considers the ones that cause the component to return the
biggest amount of data. Otherwise, it removes the edge and
adds an isolated triple to the model. In the running exam-
ple, Link successfully replaces the predicate genre with the
alternative predicate literatureGenre without disconnect-
ing the graph.

?obj_publisher	  

?obj_isbn	  
?sbj_author	  

?obj_author	  

?obj_series	  

isbn	  
publis

her	  

series	  
?obj_genre	  

literaryGenre	  

?obj_5tle	  

Figure 10: The final RDF graph

Finally, Link applies the hitting set algorithm [40] to each
connected component of the RDF graph to produce the min-
imal graph (i.e., the graph with the minimum number of
subjects) that returns the same data as the original one.
Figure 10 shows the minimal graph for the running exam-
ple.

6. GENERATE INPUTS AND RUN TESTS
In this phase, Link uses the connected components of the

RDF graph produced in the former phases to generate test
cases by extracting meaningful data from the knowledge
base.

Link can generate test inputs by querying DBpedia with
the SPARQL queries straightforwardly derived from the
RDF connected components. Simply querying DBpedia can
generate enormous amounts of data that result in unman-
ageable test suites. Link generates manageable test suites by
incrementally producing test inputs, alternating between in-
puts semantically close and inputs semantically distant from
the previously generated inputs. Semantically close inputs
validate the behaviour of the application for small variations
of the inputs. Semantically distant inputs sample different
areas of the input domain.

At each iteration step, Link considers the n connected
components C1 . . . Cn of the RDF graph and generates n+1
positive test inputs (1 test inputs if the RDF graph is con-
nected). Link extracts a tuple ti for each component Ci by
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Table 1: Test Inputs
Iteration Test Input
1 (initial) Author=”C. S. Lewis”, Title=”The Last Battle”, Se-

ries=”The Chronicles of Narnia”, Publisher=”The
Bodley Head”, literaryGenre=”Children’s litera-
ture”, isbn=”ISBN 978-0-00-720232-4”

2 (distant) Author=”Libba Bray”, Title=”A Great and Terri-
ble Beauty”, Series=”Gemma Doyle Trilogy”, Pub-
lisher=”Random House”, literaryGenre=”Fantasy
literature”, isbn=”ISBN 0-385-73028-4”

3 (close) Author=”Mario Puzo”, Title=”The Sicilian”, Se-
ries=”The Godfather”, Publisher=”Random House”,
literaryGenre=”Crime”, isbn=”ISBN 0-671-43564-7
(Hardback edition) & ISBN 0-345-44170-2 (Paper-
back edition)”

4 (distant) Author=”Larry Niven”, Title=”Convergent Series”,
Series=”The Draco Tavern”, Publisher=”Del Rey
Books”, literaryGenre=”Science fiction”, isbn=”0-
345-27740-6”

querying DBpedia with the SPARQL query corresponding
to the component. The n test inputs are obtained by using
the data values in each individual tuple independently. Note
that each tuple (i.e., each test input) consists of a set of se-
mantically coherent inputs. When the RDF graph contains
more than one connected component, Link generates an ex-
tra test input as the union of the tuples t1, . . . tn generated
for all the components of the RDF graph.

To extract tuples either semantically close or distant from
the tuples already extracted, Link exploits the notion of se-
mantic distance between resources. In particular, it uses the
Weighted Combined Distance defined by Passant [41].

The Weighted Combined (semantic) Distance is a metric
designed to measure the distance between semantic concepts
in knowledge bases and takes into account the direct links
between the resources (the more direct links exist, the closer
two resources are), the indirect links between resources (the
more links to shared resources exist, the closer the two re-
sources are), the popularity of resources (highly connected
resources have a small impact on the computation of the
distance). The process terminates with a timeout defined
by the testers.

In the running example, Link generated one component.
Table 1 shows the tuples extracted from the knowledge base
and the corresponding tests for the fist four iterations of
the algorithm. Link automatically extracted meaningful and
coherent data about books. It extracted both similar tuples,
for instance books with the same publisher at iterations 2
and 3, and distant tuples, for example, books of different
nature or genre and with one or more ISBNs.

7. EMPIRICAL EVALUATION
To evaluate Link, we considered two key aspects, the qual-

ity of the models that Link generates with respect to the
corresponding GUI, and the effectiveness of Link in gener-
ating test cases with respect to state-of-art techniques. We
evaluated the quality of the models by generating models for
GUIs from different domains and measuring the number of
fields mapped on consistent and coherent sets of data. We
evaluated the effectiveness of the model with respect to other
approaches by comparing the test cases generated with Link
to the test cases generated with a grammar-based approach
to see if and when considering the semantic aspects can im-
prove the test suites. The results confirm that the models
are accurate, and that Link generates good test suites.

Table 2: Quality of Models.
Domain Form Mapped Syn/NS PS Tot CC
books 33 51.6% 5.6% 19.1% 76.3% 1.7
music 33 62.5% 0% 17.3% 79.8% 1.2
movies 39 58.9% 5.9% 20.6% 85.4% 2.1
cars 42 38.7% 38.6% 11.2% 88.5% 3.5
all 147 52.3% 13.9% 16.8% 83% 2.2

7.1 Quality of Models
To evaluate the quality of the Link models we consid-

ered the Metaquerier repository [5], a repository of 147 real-
life Web forms of applications from four different domains:
books, music, movies, and cars [21]. We applied Link in a
fully automated way (we did not provide any user-specified
mapping) to the 147 available forms and measured the num-
ber of input fields that Link successfully mapped on coher-
ent and consistent values using DBPedia and the number of
components in the resulting RDF graph that measures the
semantic consistency among the fields of the form.

Table 2 shows the results obtained for each domain. Col-
umn Domain identifies the Metaquerier category. Column
Form indicates the amount of available forms. Column
Mapped indicates the percentage of labels mapped directly
from the GUI to classes or predicates in the knowledge base
(the data in this and in the next columns are averages over
the forms). Columns Syn/NS and PS indicate the per-
centage of labels mapped using synonyms combined with
alternative namespaces and the practical synonyms, respec-
tively. Column Tot indicates the total percentage of labels
automatically mapped with Link. Column CC indicates the
average number of connected components in the RDF graph
returned by Link. The value 1 represents the optimal case
in which all the fields of the form are semantically related.

Link has been able to automatically map 83% of the in-
put fields on average. This result indicates that Link can
effectively handle a relevant portion of the input space of an
application in a fully automatic way, and little manual inter-
vention is necessary to achieve full support. We manually
inspected the models and verified that most of the labels
that Link has not been able to map are generic words with
little correlation to the considered domain, such as the labels
keyword and label that occur in many forms, and that typ-
ically require the human intervention to be disambiguated
and properly mapped to concepts of the knowledge base.

Column Mapped indicates that the Link baseline approach
that maps labels to classes and predicates in the knowledge
base directly from the GUI is effective (Link has been able
to map more than half of the input fields directly from the
GUI on average). The complementary approaches based on
synonyms, namespaces and practical synonymous are ex-
tremely important to achieve high coverage (synonyms and
namespaces contributed to map up to 38.6% additional in-
put fields, and practical synonyms contributed to map up to
20.6% additional input fields).

Link has been also particularly effective in semantically
relating the input fields producing an average number of 2.2
connected components. We manually inspected the mod-
els and verified that most of the RDF graphs with more
than one connected component correspond to models with
isolated triples that includes a generic label, such as cate-

gory and price, with no clear correlation with the rest of
the triples. Few simple user-specified mappings may easily
disambiguate such labels and lead to much better results.
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Link has been less effective in the car domain than in the
other domains. In the car domain, Link mapped directly
the smallest number of labels, and compensated this lack
of efficiency with an extensive use of synonyms, namespaces
and practical synonyms. Although in the car domain Link
ended up mapping 88.5% of the labels, the extensive use of
indirect mapping reduced the quality of the resulting RDF
graphs which fail in capturing the semantic relation between
some relevant inputs, as witnessed by the relatively high
average number of connected components. This is due to
DBPedia that does not cover well the car domain. The data
obtained for the car domain witness a good performance of
Link also when the used knowledge base is not well suitable
for that domain.

7.2 Link vs Regular Expressions
Table 3: Effectiveness of generated test suites.

Application
Total Normal Branches

L R L R L R
aMetro 266 623 220 0 133 0
DataCrow 285 449 70 8 17 0
LDAP 284 465 50 465 1 0
LyricFinder 167 181 158 0 1 0
MyFlights 68 203 60 0 52 6
OsmAnd 139 253 63 4 104 1

Most of the techniques to automatically generate system
test cases, such as GUITAR [36] and AutoBlackTest [34],
focus on generating event sequences that use user-defined
inputs and are not designed to generate semantically mean-
ingful test inputs for complex forms. The only techniques
that consider semantic information are the ones proposed by
Bozkurt and Harman, McMinn et al. and Shahbaz et al. [17,
35, 42], but unfortunately no prototype tools were publicly
available at the time of writing.

Thus, we investigated the advantages of using semantic
information to generate complex inputs over a classic syn-
tactic approach by comparing the results of Link with the
results obtained with test cases generated using regular ex-
pressions. While Link is fully automated and application
independent, except for the user specified mapping, we de-
fined sets of regular expressions tailored for each application,
and thus particularly effective. Writing a user specified map-
ping amounts to indicate that for example the field from of
the flight search window maps to class Airport and is easily
and quickly done by a tester, while writing a complete set of
regular expressions requires the right expertise and can be
time consuming.

We selected six applications that consider real and co-
herent data with different levels of semantic correlations
among fields: aMetro [1], an Android application for man-
aging maps and routes that needs real and coherent inputs
to find paths between stations, DataCrow [2], a Web appli-
cation for cataloging resources that needs real and coherent
inputs only for a small subset of the fields, Ldap Address
Book [3], a desktop Ldap client that only checks the syn-
tactic correctness of the input fields without caring about
coherency and semantics, Lyrics Finder [4], an Android ap-
plication for finding the text of songs that needs real and
coherent values about the data of the song, like title and
artist. MyFlights [6], an Android application for monitoring
flights that requires coherent inputs for the departing and
arriving airports, and for the other information about flights.
OsmAnd [7], an Android application to find addresses that
needs coherent inputs to locate the address on the map.

We tested the main functionality of each application
(finding paths between metro stations in aMetro, search-
ing books in DataCrow, adding accounts in Ldap, retriev-
ing lyrics in Lyrics Finder, monitoring flights in MyFlights
and locating addresses in OsmAnd) using Link for 3 hours
and using regular expressions for the same amount of time
for each application. To generate test inputs with regular
expressions, we queried RegExLib [8] to select a suitable
regular expression for each input field in the application,
and, when necessary, we manually improved the expression
to better fit the required input. We then generated positive
test inputs by producing values that satisfy the expressions.

We compare the two approaches using the number of bran-
ches uniquely covered by each technique, which intuitively
represents cases that only one of the two techniques can
cover, and the number of faults revealed by each technique.

Table 3 reports the results. Columns Application indi-
cates the tested application. Columns Total and Normal
report the number of total and normal test cases generated
with Link (column L) and regular expressions (column R).
The normal test cases identify those test cases that fill out
the forms with meaningful data, and thus exercise the nor-
mal usage of the application. Such test cases check the cor-
rectness of the target functionality, while the others check
the behaviour of the form in the presence of wrong inputs.
While all test cases are important, the normal ones match
most of the test cases generated by test experts and thus
are expected to occur in good amount in useful test suites.
Column Branches reports the amount of branches uniquely
covered by one of the two techniques, and thus represents the
amount of code explored by only one of the two techniques.

The data reported in column Normal indicate that Link
generates many normal test cases, while regular expressions
generate few if any semantically meaningful test cases. The
only exception is LDAP that stores the fields required to
specify an account regardless of the semantics of the inputs,
and thus the inputs are independent from the semantics. We
identified normal executions, that is test cases with semanti-
cally meaningful data, by designing oracles that check when
the test cases exercise the normal usage of the application.

Similarly the data reported in column Branches indicate
that Link performs better than regular expressions, since
it executes many branches that are not executed otherwise.
In particular, Link executes a large amount of branches not
executed otherwise for more than half of the case studies
(aMetro, DataCrow, MyFlight and OsmAnd). Unsurpris-
ingly the effectiveness of the two approaches is similar when
the validity of the inputs is loosely related to the semantics
of the fields (LDAP and Lyrics Finder).

We also found that Link revealed three faults not re-
vealed by regular expressions: regular expressions revealed
no faults, while Link revealed three severe faults in aMetro,
Lyrics Finder and OsmAnd, respectively, that cause pro-
gram crashes and that require complex normal inputs to
be exercised. The faults detected in aMetro and in Lyrics
Finder are unknown faults.

The fault in aMetro causes a crash of the application when
an input asking for a path between two non-connected sta-
tions follows an input asking for an existing path between
stations. These inputs can be hardly generated with syntax-
based approaches.

The fault in Lyrics Finder causes a crash when a lyric of an
existing song that is not present in the Musix Match online
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catalog is asked. This fault can be revealed only by speci-
fying a complex and coherent input consisting of a proper
song title and the corresponding artist, which is almost im-
possible to generate with regular expressions.

The fault in OsmAnd is a memory leak that causes a crash
of the application when many normal inputs are executed.
Link can easily generate several normal inputs even when
complex and coherent inputs are required by the application,
and thus can easily reveal this fault, while this fault can be
hardly revealed with syntax-based approaches, due to the
limited number of normal values that they generate.

In summary, the results confirm the intuition that when
the target application exploits the semantic and coherence
of the inputs, Link works better than approaches based on
the syntax only. The readers should notice that Link is
inexpensive. The only manual step is the definition of a
user-specified mapping, which is not required, and that we
used only in three of the case studies to add a maximum of
two mappings to disambiguate generic terms.

7.3 Threats to Validity
The main internal threats to validity concern the knowl-

edge base and the input parameters. In the empirical eval-
uation we used DBPedia, which is a general purpose knowl-
edge base. The use of domain specific knowledge bases can
only improve the results, thus the reported results are a pes-
simistic approximation of the effectiveness of the technique.

We selected the values of the few parameters of the tech-
nique, like the threshold that determines if a label is a prac-
tical synonym of another label, based on our experience with
DBPedia. We checked the stability of the parameters and
we observed that the results do not change significantly for
small changes of their values. We do not know to what ex-
tend the values of the parameter and the observation about
their stability depend on the chosen knowledge base.

Another internal threat to validity concerns the correct-
ness of the prototype implementation. We did carefully test
the implementation, inspected sample executions, and com-
pared the results of multiple executions of the experiments.

The external threats to validity concern mainly the gener-
alizability of the results. We worked with a limited number
of applications, but we alleviated the problem of general-
izability by choosing applications from different domains.
The preliminary results indicate that Link is more effective
when the application exploits the semantic and coherence
of the inputs and performs as grammar based approaches
when generating positive cases for applications that only
care about the syntax of the input fields.

8. RELATED WORK
The problem of automatically generating test cases has

been addressed in many ways [10]. The most relevant classes
of approaches are random testing, coverage-driven testing,
specification-based testing, and, more recently, the usage of
realistic data. In the following we discuss these strategies.

Techniques based on random testing [39, 11] and its vari-
ants [23, 32, 22], such as adaptive random testing, can ef-
fectively test large portions of the execution space with no
manual intervention, but they are totally ineffective when
the testing of the application requires realistic and coherent
test inputs. Link exploits the semantic data available on the
Web to provide a solution that is largely automatic and that
can be used with applications that require complex inputs.

Coverage-based test input generation techniques aim to
generate test inputs that can cover the code elements that
have not been covered by the already generated tests. There
are many techniques that address this problem in different
ways, for instance using concolic testing (e.g., PEX [44],
CREST [19], KLEE [20], DART [27]), and search based test-
ing (e.g., EXYST [29], EvoSuite [26]). The effectiveness of
these techniques largely depend on both the complexity of
the application code and the scale of the system under test.
When effective, they can indeed generate test inputs that
cover several relevant corner cases. Link complements these
techniques since (1) it does not analyze the source code of
the program and thus can be applied to large scale programs,
(2) it generates complex and meaningful test inputs, and (3)
it can generate test inputs that reveal missing logic errors
that cannot be revealed with coverage-based techniques.

Model-based testing techniques generate test inputs from
specifications, when suitable specifications are available [45,
30]. The effectiveness and sophistication of the test inputs
depend on the completeness and accuracy of the specifica-
tion. Abstract specification models produce few important
tests but may overlook important corner cases, while de-
tailed specification models support thorough testing activ-
ities, but require relevant effort. Complete and accurate
specification models are often unavailable. Link provides an
automatic approach for the generation of complex test in-
puts that can be applied even in absence of a specification.

Few recent approaches target the generation of realistic
test inputs either using Web services [17] or combining Web
Searches with regular expressions [35, 42]. These approaches
demonstrated to be effective when testing functionalities
that require test inputs that are independent, but are not de-
signed to generate test inputs for functionalities that require
realistic and coherent inputs. Link provides an automatic
way to generate these inputs.

The generation of realistic test inputs has been also taken
into considered in the domain of testing interactions within
multi-agent systems. In particular, eCat [38] is a technique
for the generation of test inputs from ontologies. Different
from Link, eCat uses the ontology as a a specification model,
while Link does not require any specification but automat-
ically identifies the domain of the application and exploits
the Web of Data to generate tests.

Finally, GUI testing techniques [36, 34] share with Link
the high-level objective of testing an application using the
GUI. However, while Link specifically addresses the genera-
tion of test inputs, these techniques focus on the generation
of test sequences relying on predefined data-sets as test data.
Link could be perspectively integrated with these techniques
to improve the effectiveness of test generation.

9. CONCLUSIONS
Effective testing of many applications requires complex

and coherent inputs that must be syntactically correct, se-
mantically valid and semantically coherent. None of the
techniques proposed so far can automatically produce test
inputs that satisfy all these characteristics.

Link explores for the first time the possibility of using the
Web of data to generate complex and coherent inputs. The
preliminary empirical results confirm that our approach pro-
duces useful test suites that include syntactically correct,
semantically valid and semantically coherent inputs.
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